The Newsletter of Risktec Solutions

In this issue

Welcome to Issue 42 of RISKworld. Feel free to pass this edition on to other people in your organisation. You can also sign up here to make sure you don't miss future issues.

We would also be pleased to hear any feedback you may have on this issue or suggestions for future editions.

Contact: Steve Pearson or David McDade steve.pearson@risktec.tuv.com david.mcdade@risktec.tuv.com

Contents

introduction

Martin Fairclough brings us up to date with developments at Risktec.

CYBER HAZOP

Steve French continues his cyber risk series of articles by explaining how the tried and tested HAZOP process can be adapted to identify and assess cyber threats.

REMOTE VIEWING

In classic Darwinian style, the pandemic has spawned many innovations, many of which continue to thrive. Chris Taylor reveals the secret to undertaking safety audits remotely and sustainably.

TO ERR IS HUMAN

At some probability human errors will happen, no matter the steps we take. Can this be quantified, and if so how? With these answers and more, Clare Parker introduces us to the realm of human reliability analysis.

GETTING PHYSICAL

Understanding the consequences of fires and explosions is often a key factor in managing the associated risk. Jon Wiseman introduces us to the subject of physical effects modelling.

SMART CFD

Our best and brightest, Connor Bloodworth and Michael Kupoluyi, know all about the latest techniques in CFD and the application to cost-effective risk studies. Their greatest challenge is to explain it to us!

Thus far, 2022 has been a very encouraging year, which has seen a significant growth in business alongside the recruitment of many new people - all during a period of economic uncertainty and recovery from Covid.
We have seen increases in project activity across all the major hazard industries we support, most notably in the hydrogen, wind and carbon capture sectors.
2MC joined the Risktec Group to provide a range of Governance Risk and Compliance software and consulting services that complement the risk and safety services offered by Risktec.
Our Asset Integrity Management team continues to go from strength to strength. For example, we have now provided inspection or integrity management support to more than a third of all the UK CCGT power stations.
Now that many of the Covid restrictions have been reduced, there has been a welcome return to more face to face meetings and workshops when justified. Building relationships and working closely with our clients, whether in person or remotely, helps to fully understand their current challenges, which is crucial to us providing a valued service.

This year we have also opened a new Risktec office in Bristol that continues our approach of locating offices close to our clients to ensure we can support them locally.
Our client focus is measured by our bi-annual client satisfaction survey, with the most recent results showing that we continue to maintain very high levels of client satisfaction.
Our overall score of 'good' or 'very good' for our flexibility and responsiveness to client requirements was 98%, and for the third survey in a row 100% of respondents indicated they would recommend Risktec to others.
This is very much a period of transition, particularly in the energy industry, given the challenge of meeting sustainability objectives while remaining competitive. The articles in this issue provide an illustration of how many of the existing techniques and approaches used for managing risk can be adapted to help meet these and other challenges in cost-effective and insightful ways.

Contact: Martin Fairclough martin.fairclough@risktec.tuv.com

CyHAZOP - Bringing cyber to the HAZOP

Cyber-security is one of the fastest growing areas of concern for industrial automation and control systems, otherwise known as OperationalTechnology (OT). As associated assessment techniques and tools continue to be invented, it is worth considering what the tried and trusted Hazard and Operability (HAZOP) study methodology could bring to the cyber world.

The HAZOP has been a staple of the safety industry for decades, providing
a familiar, repeatable and effective method to identify and assess hazards affecting the safe operation of process
equipment. equipment.
The cyber-security industry for OT is stil growing and learning; this means there
is a lack of accepted risk identification and assessment processes, which in turn drives a lack of consistency.
The cyber-security industry uses very The cyber-security industry uses very business, causing further confusion.
Being well known by system managers and engineers alike, the HAZOP methodology provides a perfect bridge
for a comfortable and consistent transition to cyber risk assessment. Utilising the basic HAZOP process concept enables cyber-risk to be
assessed in a way that is scalable, assessed in a way that is scalable, can
be applied to different industries, and is compatible with a range of security standards and regulatory expectations.
WHAT IS DIFFERENT?
A traditional HAZOP utilises a series of guidewords and process parameters
that are combined to create deviations - the 'No Flow', 'Less Flow', 'More Pressure', 'Less Pressure' decriptor that all HAZOP attendees will be familiar with.

The Cyber HAZOP (or CyHAZOP) methodology keeps the same basic approach, but with specific tailored guidewords, parameters and deviations
designed to target cyber-security needs and enable direct linkage to cybersecurity vulnerabilities and controls. novel nodes
A traditional HAZOP is divided into nodes', which generally relate to large sections of the process plant and/or the same.
In a CyHAZOP a different approach is taken. The first node is always a contextual view looking at the wider business, to allow the assessor to gain a holistic perspective, incorporating all
the security domains shown in Figure

Figure 1 - The Security Domains

Subsequent nodes are based on Zones and Conduits - the definition of which for most purposes is taken from IEC
62443 (Ref 1), which defines:

A Zone as a logical or physical grouping of assets within, or
connecting to, the system in scope. A Conduit as a connection between Zones or between Sub-Zones, exchanged between these Zones.

GUIDEWORDS OR CODEWORDS? or CyHAZOP, not surprisingly, the guidewords and parameters are also specific to cyber-security; and like nodes, the correlation with conventiona
HAZOP terminology is somewhat alien.

Zone-based nodes use asset-related guidewords, such as 'Engineering Workstation', 'Control Server' and the discussion around the types of computerised assets that exist within that Zone.
An accompanying attack-chain set of parameters might be:

- Initial access
- Modsification
- Execution
- Execution

These guidewords and parameters and are then combined to give deviations such as 'Engineering Workstation nitial Access', 'Networking Equipment -Modification, which form the basis of he structure ssessment.
or Conduits a simple approach is used, the only guideword being 'Data' with a standard information security
approach for the parameters:

- Confidentiality

Integrity
This gives the deviations 'Data Confidentiality', 'Data - Integrity' and Datidentiaity, Availability', which prompt the assessment of what happens if here is a lack of data confidentiality, log availability in the Condu, ach phase of an attack, the types of vulnerabilities, consequences and controls that are used to combat threat activity typical of these phases can be
eased out.

LIKELIHOOD AND CONSEQUENCES ESTIMATION
Estimating 'Risk' is someth not always considered within a HAZOP, but when it is, this normally involves the use of a Risk Assessment Matrix RAM) to determine a likelihoodonsequence pairing thus giving riskideration the scenario under onsideration.

Determining the likelihood associated with security risk can, however, be very difficult to quantify. To help solve his, a new technique based on an and Langill in 2015 (Ref 2) is used. This employs the DREAD method originally developed by Microsoft (Ref 3) for their Security Development Lifecycle.
or the CyHAZOP, the DREAD model is modified by adding an additional criteria 'Attack Path Enablement', to create the DREAAD model (see Figure factor which enables the attack chain

conclusion

The CyHAZOP methodology is a natural development of the proven HAZOP process and as such, it offers the same
advantages: a systematic and structured technique that actively involves all stakeholders.
In practical applications,
CyHAZOP has demonstrated its effectiveness in identifying area of risk that an organisation is facing within its OT environment.
Interestingly, however, one of the biggest benefits seen has been the learning experience that it offers to work
A Webinar is available on the Risktec YouTube Channel that looks at CyHAZOP in more depth: $\underline{w w w . y o u t u b e . c o m ~}$
watch? $v=2$ IYE5RUTmK8

Contact: Steven French
onact. Steven French

Remote Control - Good practice for safety-related virtual audits

With companies grappling with how to achieve sustainability goals and reduce their overall carbon footprint, we look at how remote audits can be conducted effectively and the advantages this can bring.
default settings
Following the changes to our working lives and the lessons learned from social distancing and travel
restrictions during the coronavirus pandemic, it has become clear that many tasks can, with a bit of thought, be conducted effectively and efficiently in a virtual environment.

With an increasing focus and desire to achieve sustainability goals and reduce carbon footprints, remote audits can play a part in reducing
the need for unnecessary travel, while still delivering an accurate and complete outcome.

So, how can a remote audit be conducted effectively? In order to answer this question, it is worth reflecting on the factors that have made face-to-face audits the default option, despite the presence of ever-improving digital communication
tools. tools.
missing Pieces?
A major benefit of undertaking audits on-site is that it allows the audito both good and bad - and to witness the way people interact with each other and perform their work. In this respect, the on-site observations made by auditors play an important
part. When considering a remote audit, the absence of this firsthand interaction is one of the main challenges that must be managed, with the auditor relying on testimonial evidence from the auditees instead of their own, direct experiences. This is where experienced auditors, particularly those who have worked at similar facilities, will add significant value to the remote audit process

- building mutual trust with the site team to work towards a common goal.

Virtual reality
Irrespective of the subject matter, an
udit typically involves

- Gathering facts and reviewing relevant information; and Verifying that the design and effectiveness of a system, programme or procedure is
compliant with set standards and expectations.

Usually, these tasks can be achieved through a three-pronged approach -review, verification and interview-

The key to a successful remote audit is preparation, meaning that greate gathering and reviewing information as part of the pre-audit activities, prior to proceeding to interviews w personnel. Pre-audit activities include reviewing relevant procedures, examples of work undertaken, previous non-conformities and corrective actions taken for previously identified deficiencies.
Whilst all these issues can be managed remotely, care must be taken to ensure that adequate, relevant information is shared with the auditors in a timely manner. This will require greater co-operation from the auditee, as they cannot simply point the auditor to a filing cabinet or grant them access to a secure network drive
in practice
If a significant amount of detail needs to be covered during videoconferences, ensure that regula breaks are taken and don't be afraid to split the session over multiple days, to avoid losing people's focus. The auditor may find it useful to have an assistant to take notes and record actions as they arise. These actions and tracked to completion.

Conducting site inspections remotely more challenging, but can be achieved through a variety of means, such as live online broadcasts or prerecorded videos, if the risks to the personnel recordin

The final step in the remote audit process is to interview relevant personnel from all levels of the organisation via videoconference again to verify that systems are in place and are being adhered to. These calls allow the auditors to gather information about raining related to the area being ed to the area being audited.
necessary, a physical follow-up can be recommended. This judgement should be made using the results of the audit and the main risks associated with the topic, e.g. focusing on specific safety-critical tems or processes.

Following the completion of an audit, a review of the remote auditing revess is recommended, in orde to identify any shortcomings and opportunities for improvement.

IS It WORTH IT?
Remote audits are a practical solution without the time, cost and carbon emissions associated with travel. A carefully considered approach, taking account of the particular Circumstances of the auditee, wil
ensure that there is no impact on the quality of the outcomes for the majority of the process. Where aspects of the audit may be compromised, for example due to the absence of an on-site inspection, don't be afraid to recommend a site visit at a later date to verify the
situation first-hand.

Advantages include:
Uninterrupted surveillance programmes to meet compliance requirements.
Continued identification of potential safety issues.
Access to a broader range of table, as geographical and timebased restrictions are more flexible.
Reduced travel time, emissions and expenses.
Flexibility of approach, which can be tailored to different companies technologies and subject matters.

If there is a reluctance to conduct a remote audit, it is worth considering that even if the full effectiveness of physical audit is not achieved, it will be considerably more effective than doing nothing. Tips for successfully Table 1 Table 1

CONCLUSION

The disruption to norma working practices caused by the coronavirus pandemic prompted auditors to innovate and learn how to successfully complete audits remotely.

With careful planning, these lessons learned can be used to help us to reduce carbon emissions and achieve our
sustainability goals, while still sustainability goals, while stilh compromising on quality and accuracy.

PREPARATION

- If necessary, hold a pre-meeting to define important preparatory information Make as much supporting information as possible available electronically, well in advance applies to both the auditor and the auditee)
- Plan for the audit to take 25% longer than a face-to-face approach, but you might not need

Assign an assistant to support the auditor during the remote session - ideally they will ave worked well together previously

- For group sessions, limit attendees to the essential minimum, making clear in the
- Test the host platform with the auditee befor
- interruptions in service, and plan accordingly you start, but accept that there may be

AUDITOR

Undertake introductions metho participants' names and roles

- Keep sessions short (up to one hour with four to six in a day), so that participants remain Control the session - the subject matter, who's talking, who talks next, what actions ar needed, etc.
-Park issues (with an action) that rely on additional information or consideration rather than
ned about awkward silences, but be wary of connectivity issues Be careful not to rush thro
contributions from others
Be alert to participants wishing to speak (e.g. by monitoring microphone status or chat oom dialogue)
In the subsequent report, remember to describe the process followed

ETIQUETTE

-

To limit background noise, ask everyone to mute their microphone unless they are speaking Unless connectivty is poor, request that participants enable video to bulla up a rapport and enable the auditor to pick up on body language and other visual cues
sk everyone to identity themser anorner
Ask participants to request screen sharing if they wish to highlight specific issues on If application to the whole group
-
-Schedule breaks in advance so that people don't lose focus
ASSISTANT
ference and screen sharing and record the session As an aide memoire, take a screen shot of the list of participants at each session as
displayed by the communication platform If you miss or cannot understand something, speak up at a suitable break or message the uditor
people talk too fast or indistinctly, remind everyone to speak clearly and more slowly Take written notes if this is faster and after each day issue draft minutes to all participant Review all actions in a separate session with the au
accurate, specific and allocated to the right person
Circulate actions promptly

AUDITEE

If necessary, hold a pre-meeting to define important preparatory information Make as much supporting information as possible available electronically, well in advance - Ensure appropriate personnel are invited to and attend the scheduled videoconference sessions
For group sessions, limit attendees to the essential minimum, making clear in the
invitation who is required and who is optional nvitation who is required and who is optional
Be responsiviv to the auditor's requests and complete actions promptly, to keep the
process moving Plan for the aud - lan for the audit to take 25% longer than a face-to-face approach, but you might not need
the extra time

ErrorTrapping - An introduction to human reliability assessment

Quantitative Human Reliability Assessment (HRA) can improve the safety and reliability of systems that depend on human action. It can also reduce potentially costly redesign of systems and equipment if the opportunities for human error are identified, analysed and designed out or minimised. So what is HRA, where did it come from and what are the main steps for carrying out such an assessment?

What is human reliability ASSESSMENT?
HRA involves the use of qualitative and quantitative methods to assess the human contribution to risk. There are many and varied method available for HRA, with those firs developed focused on predicting and quantifying the likelihood of human error

The output from these methods is a Human Error Probability (HEP) of the human performance of a task or element of a task (Ref. i). methodology and step-by-step process in order to generate the process in order to generate the
HEP, while others rely solely on expert judgement

All methods require knowledge of Human Factors and the ability to make expert judgements in relation to human error likelihood.

Why do human reliability ASSESSMENT?
As practitioners of these methods will know, HRA is not an exact science. However, it is a useful means of identifying and prioritising error, and thereby reducing the frequency of associated accidents.

The assessment also identifies and informs system and equipment design features that could be implemented to minimise the likelihood of a human error actually occurring. If such opportunities for human error reduction are considered at an early design stage the scope for potentially costly redesign can be minimised.

origins of human reliability Assessment
Research into HRA started in the 1960s and accelerated following the Three Mile Island accident in 1979 when it became clear that human error was one of the main contributing factors (Ref. 2) that led to the partial meltdown of the reactor core.

Since then, other major accidents including the NASA Challenger disaster and Chernobyl (both in 1986) continue to highlight that human error can be a fundamental contributor to major accidents.

What are human error
probabilities?
HRA techniques all quantify the Human Error Probability (HEP), which is the metric of HRA. The HEP is defined as

HEP $=\frac{$\begin{tabular}{c}
Number of errors

occcured

}{

Number of opportunities

for error to occur
\end{tabular}}

There is very little HEP data available from studies and accident analysis,
most likely due to the perceived sensitivity of publishing data which may imply poor performance, coupled with a lack of appreciation of why t would be usefur to collect such data in the first place (Re. 2). This is hy so many of the common HRA methods rely, to a geater or less
human reliability assessment methods
2009, the UK Health and Safety Executive (HSE) conducted a review of all known HRA methods (Ref. 3). Of the 35 human reliability tools considered, 17 were deemed to be of potential use in the major hazard sector

A summary of three of the most well-known and widely used HRA methods is presented in Figure 1 These are

Technique for Human Error Rate Prediction (THERP)
Human Error Assessment and Reduction Technique (HEART) Absolute Probability Judgement (APJ)

THERP Technique for Human Error Rate Prediction	- Developed by Swain and Guttman in 1983 for the US Nuclear Regulatory Commission - Applied to nuclear and oil and gas, but could be applied to all high hazard industries 3 Well known and widely used, stands up to audit, prescriptive methodology detailed within THERP Handbook Tesource intensive and time consuming
HEART - Human Error Assessment and Reduction Technique	- First outlined by Williams in 1985 in a conference paper whilst working for the Central Electricity Generating Board - Applicable to all high hazard industries (e.g. rail and nuclear) 3 Well known and widely used, relatively quick and simple, requires limited resource - Relies on detailed task descriptions and judgement
APG - Absolute Probability Judgement	- Based on the work of Seaver and Stillwell (1983) - Applied to nuclear and oil and gas, but could be applied to all high hazard industries 3 Relatively quick to use, freedom to use domain knowledge, facilitates discussion amongst peers Prone to bias affecting validity, likened to "guessing", dependent on appropriate expert selection

Figure 1 - Summary of three HRA methods

STEPS FOR COMPLETING A HUMAN RELIABLLITY ASSESSMENT A common approach can be taken for all quantitative HRAs, with the overal method broken down into five high level steps.

Step 1

Task description and information gathering: Speak to the system designers, Subject Matter Experts (SME), operators, and anyone else who knows how the task in question is carried out.

Step 2

Conduct a task analysis: This is perhaps the most important step of a HRA, because it allows the analyst to break down the task into its discrete steps wher cor could occur It also uman error could occur. It also allows the analyst oidentify possible recovery opportunities

Step 3
Choose the appropriate HRA methodology, and generate HEPs for the errors being assessed: Based on typustry custorn and practice and pproprite method is chosen HEART, THERP or APJ. HEART, THERP or APJ).

Step 4
dentify any means of human error reduction: This can be based on the Performance Shaping Factors (PSF) identified during the HRA (e.g ncreased training and supervision, reduction in time pressure).

Step 5
Write up the work done, including all analysis and justification for the resulting HEPs: Being able to justify why a certain HEP is deemed appropriate and accurate is extremely mportant as it provides an audit trail and traceability, and is often needed to satisfy industry regulators.

Quantitative vs qualitative? As well as quantitative HRA methods, human reliability can also be assessed using methods that don't esult in a numerical assessment o human error probability

One of the most widely used qualitative methods is Safety Critica Task Analysis (SCTA). For SCTA, the analyst systematically reviews the overall task being assessed, anticipates what failures might occur at different task steps, and analyses what actors could increase or decrease the ikelihood of those failures.

This essentially follows a similar process as Steps 1 and 2 for checklist-based approach to the
 priority' Sugested additiona needed and may include:

Improvements in procedures

- Engineering modifications - Improved access to equipment Provision of training or additiona checks
Importantly, there isn't a one size fits all approach for human reliability, and the type and depth of the study can e tailored to the application, ranging rom high level to detailed and from qualitative to quantitative.

More information on SCTA can be found in Issue 35 of RISKworld Spring 2019) at https://risktec.tuv. om/knowledge-bank-riskworldnewsletter/

CONCLUSION

Although human error is often identified as a contributing cause to major accidents, there is scant data from operating experienc to allow direct evaluation of HEPs. Instead, mature HRA techniques can be used, which can be applied in all high hazard industries including rail, nuclea and oil and gas.

HEPs generated from HRA feed into the safety case (e.g. ORA) and help identify areas in system and equipment design where human failures are most significant and improvements can be made.

Contact: Clare Parker
clare.parker@risktec.tuv.com

DID YOU KNOW?

Risktec offer training in Human Failures and Safety Critical Task Analysis?
Find out more at https://risktec tuv.com/our-services/learning/ modules/human-failures-and-safety-critical-task-analysis/

PEM 101 - An introduction to physical effects modelling

Physical effects modelling is widely used for characterising major hazards and forms a key part of risk-based decision making in the oil, gas, chemical, hydrogen and Carbon Capture, Utilisation and Storage (CCUS) industries. Before undertaking any modelling, however, it is always a good idea to revisit the fundamentals of why and how we conduct such a study.

PHYSICAL EFFECTS Physical effects can cause serious harm to people and the environment, as well as damage to structures and hydrogen and CCUS sectors for example, the physical effects arising from the accidental release of hazardous gases, vapours or liquids can include:

- Gas dispersion (which could be flammable, toxic, asphyxiant or all three)
Jet fires and pool fires
-. Flash fires
- Expiling Liquid Expanding Vapour Explosions (BLEVEs)
Explosions (BLEV
- Subsea dispersion
- Dispersion of oil on water Tank fires

In order to manage effectively the risks from these phenomena, it is important to first understand thei consequences and implications.

Various techniques are available or modelling the physical effects, anging from simple equations to empirical software tools based on physics that have been correlated against experimental testing data. Th 3-dimensional (3D) computational fluid dynamics (CFD) simulation, which is discussed in more detail in the 'Smart CFD' article in this edition of RISKworld.
modelling
The three general steps involved in conducting physical effects consequence modelling are illustrated in Figure 1.

Step 1 - Discharge: The plant is divided into isolatable sections using Piping \& Instrumentation Diagrams
(P\&\&Ds) or Process Flow Diagrams (PFDs) . The location of each potential release within an isolatable section is determined by considering equipment which could provide a release path, e.g. flanges, valves, or vessels.

The process and release parameter or each of the identified scenarios are specified, such as composition of the material, storage pressure and temperature, and the size of the hole through which the release occurs.
These act as input parameters for the physical effects model. The composition determines flammability or toxicity (or both), while the temperature and pressure determine if the release is liquid, gas or 2-phase (a combination of liquid and gas), an the hole size dete

The output from the model describes he 'source term', i.e. the physical properties of the release (e.g. phase, elease rate, velocity and duration) at the point location of the release assess detailed time histories of a release rather than simple duration.

Step 2 - Physical effects: The next step is to input the source term into further physical effects models to determine the extent of the resulting

PROCESS AND			
RELEASE			
PARAMETERS			
1. Discharge	ATMOSPHERIC CONDITIONS		IMPACT
CRITERIA			

Figure 1 - Three steps to physical effects consequence modeling

Figure 2 - A plot plan of a tank farm showing thermal radiation levels from hydrocarbon fires
dispersion and potential fires and explosions. The outputs are usuall
either in the form of distances to specified levels of thermal radiation, gas concentration and explosion predicted magnitude of the ne phys effects at locations of interest. for example, if people are located at a certain place, how much heat will they experience from the fire?
Physical effects can vary greatly depending on the local atmosph
 and solar radiation. In particular gas dispersion distances are heavily influenced by wind speed and atmospheric stability - the more stable the conditions, the further a gas cloud affect flashing liquids and the rate of pool evaporation. Atmospheric humidit affects the transmission of heat from fires. It is important, therefore, to choose a set of conditions that are representative of local weather data
Modelling is often performed using conservative inputs (e.g. worst case pressures and compositions) becaus if the worst case is acceptable then anything less is also acceptable. However, the cumulative effect of multiple worst case assumptions can be extremely pessimistic, and care scenario is credible sure that each

Not all of the input data will be well defined and some assumptions will inevitably have to be made. As with any quantitative modelling, all assumptions should be recorded
vehicle for doing this. Whilst physical effects modelling is one of the more accurate risk-related quantitative techniques because the models are based on experimental data from rea releases, care must be taken not to their validity.

Sensitivity analysis is an appropriat technique for assessing the impact of uncertainty in the input data and modelling assumptions. It provides assumptions have the greatest effect on the results and helps to ensure any decisions made are based on a solid understanding of the inherent uncertainties.
Step 3 - Vulnerability analysis Having determined the severity of are used in a vulnerability analysis to translate the physical effect, uch as explosion overpressure into a probability of impact on people, structures/equipment or the environment, e.g. fatality, cost or damage. The vulnerability of people
depends on the extent of shelter and protective clothing, and a worst case first estimate would often assume no shelter and no protection.

Impact criteria can be in the form of lookup tables, e.g. someone
outdoors exposed to an explosion ouverpressure greater than 0.5 bar has 50% chance of fatality, or in terms of mathematical relationships called probit functions. Deriving the impact in this way means it can be combined with frequencies of occurrence to Quantitative Risk Assessm ant

USES
nce the consequences of the physical effects have been modelled validated and understood, the results an be used to help manage facility

- Classifying hazardous areas Siting buildings and specifying appropriate protection against overpressure, thermal radiation and gas ingress
Optimising site layouts and separation between units Locating vents
- Determining flare heights and assessing flame-out scenarios
Locating fire and gas de
Providing fire and blast
equirements specifying design equirements
Locating and protecting onsite muster points, temporary refuge rescue equipment
Impacts on offsite populations and arrangements for offsite evacuation
Land use planning restrictions on Emergency response plannin

As one example, when planning the ocation of new tanks or buildings, the plot plan in Figure 2 would help ensure they are located far enough away from potential sources of fire. Or, for existing tanks, the modelling could be fire protection, or cooling water deluges can prevent escalation of fir events from one tank to another.

Conclusion

Physical effects modelling techniques range from data correlations and empirical formulae, to complex 3D CFD models (as described in the 'Smart CFD' article in this edition of RISKworld

Physical effects modelling has a wide range of applications and forms a key input to many risk-related decisions at a facility. As such, it's important applied and validated and that its limitations and uncertainties are well-understood.

Contact: Jon Wiseman

on wiseman@risktec.tuv.com

Smart CFD -

Can you get more for less?

Computational Fluid Dynamics (CFD) modelling is a proven tool for the analysis of real-world fluid flow and heat transfer problems, ranging from turbine blade design to fire and explosion assessment. To properly explore potential options or uncertainties may, however, require a large number of simulations, with the associated expansion of costs and timescales. So, is there a smarter way of unleashing the power of CFD?

CFD-BASED OPTIMISATION Computational Fluid Dynamics (CFD)
has gained worldwide popularity due to has gained worldwide popularity due to
its proven ability in design optimisation. Unlike physical testing, a large number of numerical simulations can be easily conducted with an arbitrarily low level of error.

However, the ever increasing sophistication and complexity of CFD models has led to higher computational
costs, long model run times and the costs, long model run times and the
requirement for extensive user expertis requirement for extensive user expertise
This is compounded by the increasing desire to vary more and more parameters in the search for optimised designs or a greater understanding of the effects of uncertainty, as an input to Quantitative
Risk Assessment (ORA) for instance. Thankfully, there are smart methods available that can significantly reduce the CFD effort.

Figure 1-4 Stages of Meta Model Application

Over the last 70 years, Meta-Models (MMs) have gained wide adoption as a cost effective alternative to explicit
modelling (Ref. 1). MMs (also known as multivariate interpolation / respons surface methods) are a powerful tool for substantially reducing computational time and effort through the use of parametric

HOW IT WORKS
MMs allow the estimation of simulation results for a given set of input parameters, thus reducing the number achieved through the 4 stage process shown in Figure 1 .

MMs make predictions based on pre-prepared data from a limited
set of complete CFD simulations These simulations are chosen to cover variations in the required model parameters, with the parameter values appropriately sampled over the credib

Once the MM is trained and validated, the MM can be used in place of the CFD model for generating simulation results
across the entire parameterspace (Ref. 3).
design of sampling
Unfortunately, as the number of variables (or dimensions) increases, the number of CFD cases required increases exponentially. However, choosing an
effective sampling method is a way to reduce the effect of increasing numbers of parameters (see Figure 2).

Available sampling techniques have various benefits and drawbacks, with the
nost commonly utilised methods being
Systematic Grid: This is the m
basic sampling method, which tilises a grid of sample points splitting each parameter equally. This is, as it turns out, a very inefficient sampling method (this is clearer when considering 2D projections of
the samples, since most of the points line up).
2. Latin Hypercube Sampling: Another common sampling technique, which splits the domain into hypercubes and andomly places points. A drawback parameter-space filling.
3. Quasi-Monte Carlo Sampling: Methods, such as Hammersley, Halton and Sobol sequences, were designed with efficient para, weat space filling in mind. Sobol these, and are generated based on primitive polynomials.
training and validation Prior to training the MM, any scale bias is removed by normalising each of the parameters. The model is trained using the combinations of parameter values generated by sampling and the corresponding CFD results. For testing are generated together with CFD results. The magnitude of errors is identified by comparing the MM values against the CFD results. The accuracy of predictions

Ansys Inc. Design Xplorer Stat-ease Inc. Design-Expert © Mathworks Inc. Matlab consider:

- Accuracy of the results obtained Quality of the training database Volume of CFD calculations necessary to sufficiently train the model
predictions can be improved
Computational power Over the past two decades, microchi ore's Law - the number of trans on a microchip doubles every two years. Alongside the 1000 -fold increase over his period, we have seen a significan ncrease in affordable computational This, in tandem with the ability to utilise high performance computing systems to run large numbers of simulations in a matter of days translates to greater accuracy and coverage of ight of the original motives for using MMs, and be aware that this same increase in computing power may dilute the benefits over explicit modelling in enarios where the analysis cases are well defined.

conclusion

MMs can substantially reduce computational time and effort
when conducting CFD analysis with multiple variables, although some studies (such as ERA) are inherently less suited than others This notwithstanding, the accuracy of the sampling method, quality of the training data and choice of statistical validation techniques
Current applications of MMs range from physical effect modelling to reliability analysis. As computing power and speed continue their upward trajectory, the potential limited by our res aroabably limited by our imagination.

Contact:

Connor Bloodworth or Michael Kupoluy Michael. Kupoluyi@risktec tuv.com

Number of training data points
Dimensionality of the data
Distribution of training data points Whether the prediction points are training data

Example prediction surfaces and errors are shown in Figure 3.
There are multiple statistical techniques for determining the optimal trained model, such as the Coefficient of Determination (R^{2}) and Likelihood Function. In practice, more than one technique forld bed as there are

APPLICATIONS
MMs have been applied in some form in Explosion Risk Analysis (ERA) for
the last 20 years (Ref 2) Where this the last 20 years (Ref. 2). Where this plant and equipment, there is typically a need for a large number of simulations, given the wide range of possible release scenarios. Combinations of the thousands of dispersion simulations, simply by varying

Release rate, location and orientation Representative fluid (composition, Wind direction and speed
Wind direction and speed

Figure 3 - Validation of Meta-Model question often used: Regression
ools include. 27-28 November 2000) (pp. 3-4.).
3. Romputers \& Chemical Engineering, 108, pp. 232 -239. Simiarly for explosions, the follow

- Gas cloud location, size and shape Representative fluid composition he number of CFD simulations, but accuracy where consequences are

MMs can, however, be applied much more widely. Some known applications

Wind turbine blade desig optimisation - Neural Networks, Genetic Aggregation Resp
Surface (GARS) algorithm
Modelling CO2 leakage from a storage complex for CCS - Neural Networks, Gaussian Proces

Reliability Analysis of Nuclear Passive Safety Systems - Genetic
Aggregation Response Surface (GARS) algorithm, Neural Networks
here are several commercially available of the most commonly used off the shelf

Other topical articles from our Knowledge Bank you might enjoy...

CYBER-SECURITY OF OPERATIONAL TECHNOLOGY
Discussing the cyber threat to industrial automation and control systems.

COST-EFFECTIVE SAFETY CRITICAL TASK ANALYSIS Challenging the perception that assessing the enormous number of tasks at an industrial facility would be too time consuming, practical methods have been developed for costeffective analysis of safety critical tasks.

DELIVERING SUCCESSFUL TECHNICAL WORKSHOPS REMOTELY

The art of conducting remote technical workshops, for example HAZID, HAZOP or LOPA.

MAKING THE MOST OF FIRE AND GAS DETECTOR MAPPING
Using fire and gas detector mapping studies to support the design process and optimise the number of detectors needed to meet coverage targets.

RISKTEC OFFICES WORLDWIDE

UK Principal Office

Wilderspool Park
Greenall's Avenue
Warrington WA4 6HL
United Kingdom
Tel +44 (0)1925 611200

TÜV Rheinland Headquarters
TÜV Rheinland Group
Industrial Services
Am Grauen Stein
51105 Cologne, Germany tuv.com

Middle East

Dammam
Dubai
Muscat

Europe

Aberdeen
Bristol
Derby
Edinburgh
Glasgow
London
Rijswijk

For further information, including office contact details, visit:
risktec.tuv.com
or email:
enquiries@risktec.tuv.com
You can also find us on:

Y @TUVRisktec

Linkedin.

- Youldue
f

